Regiodirected Substitution of [2.2]Paracyclophanedienes and [2.2]Paracyclophanes through Tricarbonylchromium Complexation^[1,2]

Michael Stöbbe. Oliver Reiser. Thies Thiemann, Rhys G. Daniels and Armin de Meijere"

Institut für Organische Chemie der Universität Hamburg, Martin-Luther-King-Platz 6, D-2000 Hamburg 13, W. Germany

Abstract: 4,7-dialkaxy[2.2] paracyclophanes and the corresponding 1,9-dienes are shown to undergo selective complexation with Cr(CO) 2L3-reagents on their less substituted benzene moiety. Lithiation/silylation of these complexes leads to arene- or bridge-substitution, respectively. An analogous behaviour is observed for the tricarbonylchromium[2.2] paracyclowhone and its 1,9-diene.

Arene tricarbonylchromium complexes are known to undergo direct metalation easily and regioselectively^[3]. This and the possible subsequent electrophilic substitution of such complexes appeared to be a simple route to donor-acceptor-substituted [2.2]paracyclophane derivatives of type 1 from readily accessible 4,7-dialkoxy[2.2]paracyclophanedienes $2^{[4]}$ via their tricarbonylchromium complexes 4 and 6.

Hydroquinone **2a** was obtained by acid-catalyzed (acetic acid/methanol) enolization of the corresponding quinol^[5] (94% yield, mp 231°C) and alkylated to its dimethyl- 2b $(87\%)^{[6]}$ and dibutyl ether 2c $(68\%)^{[6]}$ with dimethylsulfate and n-butylbromide, respectively. Catalytic hydrogenation of 2b and 2c (Pt, EtOH) afforded the saturated 4,7-dialkoxy[2.2]paracyclophanes $\Im \mathbf{b}^{[7]}$ and $\Im \mathbf{c}^{[6]}$ (80% and 92%), respectively.

The tricarbonylchromium complexes $\frac{4}{5}$ and $\frac{6}{7}$ were formed upon reacting 2 and \Im respectively with (EtCN)₃Cr(CO)₃ in dioxane^[8] (method A) or Cr(CO)₆ in dibutylether/tetrahydrofuran (THF) 10:1 ^[9] (method B). It is noteworthy that all these complexations occurred regioselectively at the less substituted benzene ring^[10] except for that of **6**c with (EtCN)₃Cr(CO)₃. Method A consistently gave better yields but with less regioselectivity (scheme 1).

Scheme 1. Product distribution (isol. yields after recrystallization)
upon complexation of 2 and 3.

Lithiation of 4 with <u>n</u>-butyllithium/N,N,N',N'-tetramethylethylenediamine $(\underline{n}-BuLi/TMEDA)^{[3b]}$ in THF and subsequent trapping with chlorotrimethylsilane (TMSC1) gave almost exclusively the 1,10-bistrimethylsilyl derivative **8** (b: 43%; c: 80% isolated)^[6] along with minor amounts (b: 6%) of the 1,9-bis-trimethylsilyl derivative. 4b gave a substantial fraction (32% isolated) of the 1-monosilylated derivative upon treatment with 5 n-BuLi and TMSC1.

In contrast to this, the saturated complex 6c was metalated at the tricarbonylchromium complexed benzene ring under identical conditions. Only a mono-lithiation/silylation was achieved (65% yield), however, even with a tenfold excess of <u>n</u>-BuLi after more than 40 hrs. Reacting the monosilylated complex $14c^{[6]}$ again with 10 <u>n</u>-BuLi/TMSC1 gave the <u>para</u>-bissilylated complex $p-15c^{[6]}$. The pseudo-<u>ortho</u>-configuration was assigned to 15c on the basis of its ¹H-NMR-spectrum^[11].

Scheme 2. Lithiation/silylation of [2.2]paracyclophane complexes.

I: 1) 5<u>n</u>-BuLi/TMEDA, THF, -78°C, 2h; 2) TMSCl. II: 1) CF₃CO₂H, O₂; 2) H₂O. III: Y#H: 1) 10<u>n</u>-BuLi/ TMEDA, THF, -78°C, 40-50h; 2) TMSCl. Y=H: 1) 5<u>n</u>-BuLi/TMEDA, THF, -78°C, 41h; 2) TMSCl. IV: Y#H: 10<u>n</u>-BuLi/TMEDA, THF, -78°C, 40-50h; 2) TMSCl. Y=H: 1) 10<u>n</u>-BuLi/TMEDA, THF, -78°C, 14h; 2) TMSCl.

The striking selectivity for bridge metalation in 4 and ring attack in 6 cannot be caused in any way by the alkoxy substituents as it is also observed for the parent complexes $11^{[6]}$ and $17^{[12]}$, which predominantly gave the 1,10-bissilylated 12 (41%)^[6] and the <u>p</u>- and <u>m</u>-bissilylated complexes <u>p/m-19</u> (72%, <u>p/m</u> = 1.33)^[6], respectively, the latter was obtained in two steps via the monosilyl derivative **18** (90%)^[6].

Apparently in these compounds there is a delicate balance in the kinetic acidities of the various vinylic and arylic positions, which favors vinylic proton abstraction from the 1,10-positions in the diene complexes 4, 11 and arylic deprotonation in their saturated analogues 6, 17. Once the vinylic 1,10-positions are protected as in 9b, further stepwise metalation/silylation with 10 and 5 equivalents <u>n</u>-BuLi/TMEDA and TMSCl respectively surprisingly leads to the pentakistrimethylsilyl derivative 10b (37% overall). As the ligands 9, 13, 16, 20 can be liberated from the corresponding complexes by oxidation in trifluoroacetic acid, the three step sequence of complexation, lithiation and electrophilic substitution opens a new route to various compounds of type 1 with intramolecular charge transfer.

Table 1. Spectroscopical and physical data of selected new [2.2]paracyclophane chromium complexes.

Compound	mp., [°C] (N ₂ ,sealed tube)	IR: (CH ₂ Cl ₂): ∨C≡O [cm ⁻¹]	UV:(CH ₂ Cl ₂ , λ_{max}[nm] (lg ɛ))	¹³ C-NMR(CDCl ₃): δ_{C≡O} [ppm]
щъ	163(decomp.)	1960, 1880	338 (4.13)	234.75
ЩС	97-98	1959, 1879	337 (4.01)	234.93
5b	158-161(decomp.)	1953, 1872	334 (3.83), 410 (3.57)	235.26
5c	103-104	1953, 1869	335 (3.72), 4.06 (3.48) 235.60
6c	138	1954, 1874	336 (4.05)	235.22
7c	175 - 176	1947, 1861	339 (3.75)	236.17
8b	201	1954, 1876	339 (4.08)	235.16
8e	142 ~ 143	1954, 1876	338 (3.99)	235.30
<u>p</u> -15e	143 - 144	1947, 1871	340 (3.97)	235.40
11	190(decomp.)	1960, 1881	342 (3.97)	234.81
12	198 - 201	1952, 1875	345 (3.97)	235.18

¹H-NMR (270 Mhz, CDCl₃): **4c:** δ = 0.96(t, ³J = 7.2, 6H, CH₃), 1.45(m, 4H, CH₂CH₃), 1.69(m, 4H, CH_2CH_2O), 3.76(dt, 2J = 9.1, 3J = 6.6, 2H, OCH_2^a), 3.85(dt, 2J = 9.1, 3J = 6.6, 2H, OCH₂^b), 4.73 and 5.04(AA'BB' system, $\overline{3}J = 7.0$, $\overline{4}J = 1.4$, 12(13, 15,16)-H), $\overline{6.10}(s, 5(8)$ -H), $6.72(d, \frac{3}{J} = 10.0, 1(10)$ -H), $7.11(d, \frac{3}{J} = 10.0, 1(10)$ 2(9)-H). **6c**: δ = 1.01(t, $\frac{3}{J}$ = 7.3, 6H, CH₃), 1.54(m, 4H, CH₂CH₃), 1.77(m, 4H, OCH_2CH_2 , 2.53-2.82(m, 6H), 3.54(m, 2J = 12.2, 3J = 9.2, 2H), 3.75(dt, 2J = 9.2, $\overline{{}^{3}J}$ = 6.1, 2H, OCH₂^a), 3.86(dt, $\overline{{}^{2}J}$ = 9.2, $\overline{{}^{3}J}$ = 6.1, 2H, OCH₂^b), 4.55 and 4.85(AA'BB' system, ${}^{3}J$ = 6.8, ${}^{4}J$ = 1.9, 12(13,15,16)-H), 6.03(s, 5(8)-H). **7c:** δ = 1.01(t, ${}^{3}J$ = 7.3, 6H, CH₂), 1.54(m, 4H, CH₂CH₂), 1.75(m, 4H, OCH_2CH_2 , 2.29(m, 2H), 3.05-3.27(m, 6H), 3.59(dt, 2J = 8.5, 3J = 6.1, 2H, OCH_2^a , 3.80(dt, 2J = 8.5, 3J = 6.1, 2H, OCH_2^b), 4.40(s, 5(8)-H), 6.65 and 6.90(AA'BB' system, ${}^{3}J = 8.0$, ${}^{4}J = 1.9$, 12(13, 15, 16)-H). 8c: $\delta = 0.25(s, 18H, SiCH_3), 0.97(t, \frac{3}{J} = 7.4, 6H, CH_3), 1.48(m, 4H,$ CH₂CH₃), 1.68(m, 4H, OCH₂CH₂), 3.72(m, 2H, OCH₂^a), 3.85(m, 2H, OCH₂^b), 4.56 and 4.86(AA'BB' system, $\overline{3}_{\underline{J}} = 7.1$, $\overline{4}_{\underline{J}} = 1.7$, 12(13,15,16)-H), 6.01(s, 5(8)-H), 7.22(s, 2(9)-H). $p-15c: \delta = 0.44(s, 18H, SiCH_3), 0.99(t, \frac{3}{J} = 7.2, 6H, CH_3), 1.52(m, 2H,$ С<u>H</u>₂CH₃), 1.73(m, 2H, C<u>H</u>₂CH₂O), 2.59(m, 2H, C<u>H</u>₂), 2.78(m, 4H, C<u>H</u>₂), 3.45(m, 2H, CH_2), 3.73(dt, 2J = 9.1, 3J = 6.3, 2H, OCH_2^a), 3.90(dt, 2J = 9.1, 3J = 6.3, 2H, OCH₂^b), 4.94(s, 13(16)-H), 6.21(s, 5(8)-H). References and footnotes. [1] Dedicated to Professor Heinz A. Staab on the occasion of his 60th birthday. [2] This work was supported by the Stiftung Volkswagenwerk, the Fonds der Chemischen Industrie as well as E. Merck AG, Darmstadt and CWH AG, Marl/Hüls. [3] Cf. a) R.J. Card, W.S. Trahanovsky, J. Org. Chem. <u>45</u>, 2555, 2560 (1980); b) M.F. Sem-melhack, J. Bisaha, M. Czarny, J. Am. Chem. Soc. <u>101</u>, 768 (1979); c) G. Jaonen, Mayar G. Singer and M. Czarny, J. Am. Chem. Soc. <u>101</u>, 768 (1979); c) G. Jaonen, A. Meyer, G. Simmoneaux, J. Chem. Soc. Chem. Comm. 1975, 813. [4] a) M. Stöbbe, Diplomarbeit, Hamburg 1982; b) M. Stöbbe, Dissertation, Universität Hamburg 1986. [5] I. Erden, P. Gölitz, R. Näder, A. de Meijere, Angew. Chem. 93, 605 (1981); Angew. Chem. Int. Ed. Engl. 20, 581 (1981).

- [6] All new compounds gave satisfactory elemental analysis data and were fully characterized by IR, ¹H-NMR (see table 1), (¹³C-NMR in part), MS spectroscopy.
- [7] Cf. H.A. Staab, V. Taglieber, <u>Chem. Ber.</u> <u>110</u>, 3366 (1977).
- [8] H. Werner, R. Prinz, E. Deckelmann, Chem. Ber. 102, 95 (1969).
- [9] C.A. Mahaffy, P.L. Pauson, Inorg. Synth. 19, 154 (1979).
- [10] This has its precedent in the regioselective complexation of 1,4-dimethoxynaphthalene. Cf. E.P. Kündig, V. Desobry, D.P. Simmons, J. Am. Chem. Soc. 105, 6962 (1983).
- [11] This assignment rests on the observation in a series of such compounds that the resonance of a proton pseudo-geminal to an alkoxy group is shifted to lower and that of a pseudo-ortho positioned proton to higher field with respect to those in the unsubstituted compounds. Cf. a) H.J. Reich, D.J. Cram, J. Am. Chem. Soc. <u>91</u>, 3534 (1969);
 b) T. Shinmyozu, T. Inazu, T. Yoshino, <u>Chem. Lett. <u>1977</u>, 1347.
 </u>
- [12] a) D.J. Cram, D.I. Wilkinson, J. Am. Chem. Soc. 82, 5721 (1960); b) F. Christiani, D. de Fillipo, P. Deplano, F. Devillanova, A. Diaz, E.F. Trogu, G. Verani, <u>Inorg.</u> <u>Chim. Acta</u> 12, 119 (1975); c) H. Ohno, H. Horita, T. Otsubo, Y. Sakata, S. Misumi, <u>Tetrahedron Lett.</u>, <u>1977</u>, 265.

(Received in Germany 5 March 1986)